GC垃圾回收

188 阅读8分钟

先上图

1.JVM内存分配与GC垃圾回收

从这张图可以清楚的看到整个GC回收的主要对象----也就是java堆(或者就叫堆) 首先这个堆的三分之一为新生代,三分之二为老年代,然后呢新生代又有十分之八是伊甸区,十分之二是幸存区。然后这个幸存区又分为from区和to区,这个from区和to区其实是一个交替使用的名称叫法,总体的划分大致就是这样的,那剩下的就是讲述GC的过程了:

1.1 新生的对象优先在Eden区分配(当新生的对象特别大或者直接是Eden区内存不能满足的情况就直接存放在老年代了---当然这种情况是很少的)

大多数情况下,对象在新生代中 Eden 区分配。当 Eden 区没有足够空间进行分配时,虚拟机将发起一次Minor GC。我们来进行实际测试一下。 在测试之前我们先来看看 Minor Gc和Full GC 有什么不同呢? 新生代GC(Minor GC):指发生新生代的的垃圾收集动作,Minor GC非常频繁,回收速度一般也比较快。 老年代GC(Major GC/Full GC):指发生在老年代的GC,出现了Major GC经常会伴随至少一次的Minor GC(并非绝对),Major GC的速度一般会比Minor GC的慢10倍以上。

1.2 大对象直接进入老年代

大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。 为什么要这样呢? 为了避免为大对象分配内存时由于分配担保机制带来的复制而降低效率。

1.3 长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别那些对象应放在新生代,那些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。 如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为1.对象在 Survivor 中每熬过一次 MinorGC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

2.如何判断对象可以被回收

堆中几乎放着所有的对象实例,对堆垃圾回收前的第一步就是要判断那些对象已经死亡(即不能再被任何途径使用的对象)。

2.1 引用计数法

给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加1;当引用失效,计数器就减1;任何时候计数器为0的对象就是不可能再被使用的。 这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间相互循环引用的问题。 所谓对象之间的相互引用问题,如下面代码所示:除了对象objA 和 objB 相互引用着对方之外,这两个对象之间再无任何引用。但是他们因为互相引用对方,导致它们的引用计数器都不为0,于是引用计数算法无法通知 GC 回收器回收他们。

2.2 可达性分析算法

这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的。 GC Roots根节点:类加载器、Thread、虚拟机栈的本地变量表、static成员、常量引用、本地方法栈的变量等等

2.3 finalize()方法最终判定对象是否存活

即使在可达性分析算法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历再次标记过程。 标记的前提是对象在进行可达性分析后发现没有与GC Roots相连接的引用链。

  1. 第一次标记并进行一次筛选。 筛选的条件是此对象是否有必要执行finalize()方法。 当对象没有覆盖finalize方法,或者finzlize方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”,对象被回收。
  2. 第二次标记 如果这个对象被判定为有必要执行finalize()方法,那么这个对象将会被放置在一个名为:F-Queue的队列之中,并在稍后由一条虚拟机自动建立的、低优先级的Finalizer线程去执行。这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束。这样做的原因是,如果一个对象finalize()方法中执行缓慢,或者发生死循环(更极端的情况),将很可能会导致F-Queue队列中的其他对象永久处于等待状态,甚至导致整个内存回收系统崩溃。 finalize()方法是对象脱逃死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模标记,如果对象要在finalize()中成功拯救自己----只要重新与引用链上的任何的一个对象建立关联即可,譬如把自己赋值给某个类变量或对象的成员变量,那在第二次标记时它将移除出“即将回收”的集合。如果对象这时候还没逃脱,那基本上它就真的被回收了。 见示例程序:

2.4 如何判断一个常量是废弃常量

运行时常量池主要回收的是废弃的常量。那么,我们如何判断一个常量是废弃常量呢? 假如在常量池中存在字符串 "abc",如果当前没有任何String对象引用该字符串常量的话,就说明常量 "abc" 就是废弃常量,如果这时发生内存回收的话而且有必要的话,"abc" 就会被系统清理出常量池。

2.5 如何判断一个类是无用的类

方法区主要回收的是无用的类,那么如何判断一个类是无用的类的呢? 判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面3个条件才能算是 “无用的类” : 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。 加载该类的 ClassLoader 已经被回收。 该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。 虚拟机可以对满足上述3个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样不使用了就会必然被回收。

3.垃圾收集算法

先上图

3.1 标记-清除算法

算法分为“标记”和“清除”阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。它是最基础的收集算法,效率也很高,但是会带来两个明显的问题:

  1.  效率问题
    
  2.  空间问题(标记清除后会产生大量不连续的碎片)
    

3.2 复制算法

为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。

3.3 标记-整理算法

根据老年代的特点特出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一段移动,然后直接清理掉端边界以外的内存。

3.4 分代收集算法

当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。 比如在新生代中,每次收集都会有大量对象死去,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。