二叉搜索树(一)

341 阅读4分钟

今天写一篇二叉搜索树(Binary Search Tree,后文简写 BST)相关的文章,手把手带你刷 BST。

首先,BST 的特性大家应该都很熟悉了:

1、对于 BST 的每一个节点node,左子树节点的值都比node的值要小,右子树节点的值都比node的值大。

2、对于 BST 的每一个节点node,它的左侧子树和右侧子树都是 BST。

二叉搜索树并不算复杂,但我觉得它构建起了数据结构领域的半壁江山,直接基于 BST 的数据结构有 AVL 树,红黑树等等,拥有了自平衡性质,可以提供 logN 级别的增删查改效率;还有 B+ 树,线段树等结构都是基于 BST 的思想来设计的。

从做算法题的角度来看 BST,除了它的定义,还有一个重要的性质:BST 的中序遍历结果是有序的(升序)

也就是说,如果输入一棵 BST,以下代码可以将 BST 中每个节点的值升序打印出来:

void traverse(TreeNode root) {
    if (root == nullreturn;
    traverse(root.left);
    // 中序遍历代码位置
    print(root.val);
    traverse(root.right);
}

那么根据这个性质,我们来做两道算法题。

230. 二叉搜索树中第K小的元素

image.png

image.png

这个需求很常见吧,一个直接的思路就是升序排序,然后找第k个元素呗。BST 的中序遍历其实就是升序排序的结果,找第k个元素肯定不是什么难事。

按照这个思路,可以直接写出代码:

int kthSmallest(TreeNode root, int k) {
    // 利用 BST 的中序遍历特性
    traverse(root, k);
    return res;
}

// 记录结果
int res = 0;
// 记录当前元素的排名
int rank = 0;
void traverse(TreeNode root, int k) {
    if (root == null) {
        return;
    }
    traverse(root.left, k);
    /* 中序遍历代码位置 */
    rank++;
    if (k == rank) {
        // 找到第 k 小的元素
        res = root.val;
        return;
    }
    /*****************/
    traverse(root.right, k);
}

这道题就做完了,不过呢,还是要多说几句,因为这个解法并不是最高效的解法,而是仅仅适用于这道题。

538. 把二叉搜索树转换为累加树

image.png

image.png

力扣第 538 题和 1038 题都是这道题,完全一样,你可以把它们一块做掉。

题目应该不难理解,比如图中的节点 5,转化成累加树的话,比 5 大的节点有 6,7,8,加上 5 本身,所以累加树上这个节点的值应该是 5+6+7+8=26。

我们需要把 BST 转化成累加树,函数签名如下:

TreeNode convertBST(TreeNode root)

按照二叉树的通用思路,需要思考每个节点应该做什么,但是这道题上很难想到什么思路。

BST 的每个节点左小右大,这似乎是一个有用的信息,既然累加和是计算大于等于当前值的所有元素之和,那么每个节点都去计算右子树的和,不就行了吗?

这是不行的。对于一个节点来说,确实右子树都是比它大的元素,但问题是它的父节点也可能是比它大的元素呀?这个没法确定的,我们又没有触达父节点的指针,所以二叉树的通用思路在这里用不了。

其实,正确的解法很简单,还是利用 BST 的中序遍历特性

刚才我们说了 BST 的中序遍历代码可以升序打印节点的值:

void traverse(TreeNode root) {
    if (root == null) return;
    traverse(root.left);
    // 中序遍历代码位置
    print(root.val);
    traverse(root.right);
}

那如果我想降序打印节点的值怎么办?

很简单,只要把递归顺序改一下就行了:

void traverse(TreeNode root) {
    if (root == null) return;
    // 先递归遍历右子树
    traverse(root.right);
    // 中序遍历代码位置
    print(root.val);
    // 后递归遍历左子树
    traverse(root.left);
}

这段代码可以从大到小降序打印 BST 节点的值,如果维护一个外部累加变量sum,然后把sum赋值给 BST 中的每一个节点,不就将 BST 转化成累加树了吗

看下代码就明白了:

TreeNode convertBST(TreeNode root) {
    traverse(root);
    return root;
}

// 记录累加和
int sum = 0;
void traverse(TreeNode root) {
    if (root == null) {
        return;
    }
    traverse(root.right);
    // 维护累加和
    sum += root.val;
    // 将 BST 转化成累加树
    root.val = sum;
    traverse(root.left);
}

这道题就解决了,核心还是 BST 的中序遍历特性,只不过我们修改了递归顺序,降序遍历 BST 的元素值,从而契合题目累加树的要求。

简单总结下吧,BST 相关的问题,要么利用 BST 左小右大的特性提升算法效率,要么利用中序遍历的特性满足题目的要求,也就这么些事儿吧。